Students must follow the lecture discussion and read the textbook in order to answer the following questions:

- Rate = change in ______. The usual unit for rate is ______. As time progresses, the concentration of the reactants ______. (decreases/increases). As time progresses, the concentration of the products ______. (decreases/increases).
- Ethanol (C₂H₅OH), the active ingredient in alcoholic beverages and an octane booster in gasoline, is produced by the fermentation of glucose. The balanced equation is C₆H₁₂O_{6(aq)} → 2 C₂H₅OH _(aq) + 2 CO_{2(g)} Write this the mathematical relationship of Δ[C₂H₅OH]/Δt and Δ[C₆H₁₂O₆]/Δt
- 3. The rate law is a relationship between _______.
 Rate = k[A]ⁿ in this expression, k is the _______. and the exponent n is the ______. The rate constant and order of the reaction must be determined by _______. If n = 1, the reaction is _______ order and the rate is _______. If n = 1, the reaction of A. If the concentration of A is tripled, the rate will increase by a factor of ______. If n = 2, the reaction is _______ order. If the concentration of A is tripled, the rate will increase by a factor of ______. If n = 0, the reaction is _______ order and the rate is _______ of the concentration of A. This means that if the concentration of A is tripled, the rate will _______ of the concentration of A is tripled, the rate will ________ of the concentration of A. The half-life of a reaction is the time required for _________ and is independent of the concentration.
 5. The equation for the half-life of a first order reaction is t_{1/2} = ________ and is independent of the concentration.
- 6. The equation for the half-life of a zero order reaction or a second order reaction is (dependent/independent) on the concentration of reactant.
- 7. Calculate the rate constant for the first-order decomposition of hydrogen peroxide in water at 40 °C, using the data given in Figure.

- 8. Determine the half life $(t_{1/2})$ in seconds
- 9. The diagram below is an example of a reaction coordinate diagram for a single step reaction. Label the following and identify whether the reaction is endothermic or exothermic.

- reactant energy level
- product energy level

- activation energy (E_a)
- Δ H_{rxn}
- transition state or activated complex energy level

- 10. The Arrhenius equation shows the dependence of the rate constant on temperature and activation energy. Write the Arrhenius equation and define its terms
 - k =
 - terms:

T =

A =

$$E_a =$$

11. An alternative form of the Arrhenius equation is found by taking the natural log of the above equation. Write the **ln k version** of the Arrhenius equation below.

R =

Note that this equation has the form of a straight line (y = mx + b) if y is taken as ln k and x is taken as 1/T. If the rate constant for a reaction is measured as a function of temperature, a plot of ln k vs. 1/T will give a straight line with slope = ______

In some case, when either data are limited or plotting capabilities are absent, we can calculate the activation energy of a reaction by measuring the rate constant at **two temperatures**:

12. Explain how a chemical reaction occurs according to the collision model.

13. A reaction mechanism is			
Each step in a reaction mechanism is an			
A reaction intermediate is	reaction intermediate is in one elementary step and		in
another.			
A catalyst is			·
In a homogeneous catalysis, the catalysis exists in the		phase as reactants.	
In a heterogeneous catalysis, the catalysis exists in a		phase than the reactants	

14. How does a catalyst speed up a reaction? How can a catalyst be involved in a reaction without being summed by it?