CHM 1220-Dang

- 1. Using intermolecular forces to explain why isn't pentanol (CH₃CH₂CH₂CH₂CH₂OH) very soluble in water?
- 2. Arrows in the energy diagram below represent enthalpy changes occurring in the endothermic formation of a solution:

 $\Delta H_{\rm soln}$ = enthalpy of solution

 $\Delta H_{\text{solute-solute}}$ = enthalpy change involving solute-solute interactions

 $\Delta H_{\text{solute-solvent}}$ = enthalpy change involving solute-solvent interactions

 $\Delta H_{\text{solvent-solvent}}$ = enthalpy change involving solvent-solvent interactions

- a. Which arrow represents $\Delta H_{\text{solute-solvent}}$?
- b. Which arrows represent $\Delta H_{\text{solute-solute}}$ and $\Delta H_{\text{solvent-solvent}}$?
- c. Which arrow represents ΔH_{soln} ? Determine whether ΔH_{soln} is endothermic or exothermic. Explain why.

Fill in the blanks

- 3. Freezing point depression, boiling point elevation, vapor pressure lowering, and osmotic pressure are examples of ______ properties, which depend on the amount but not the chemical identity of dissolved particles.
- 4. The solubility of a gas in a liquid is greatest at _____ pressures and _____ temperatures.
- 5. If dissociation of MgCl₂ in water were 100%, the van't Hoff factor would be _____; however, for real solutions the van't Hoff factor for MgCl₂ is _____ (greater than, less than) this value.
- 6. Rank the following aqueous solutions from lowest to highest freezing point: 0.10 m FeCl₃, 0.30 m glucose (C₆H₁₂O₆) and 0.15 m CaCl₂. Assume complete dissociation.

7. The following diagram shows a close-up view of part of the vapor-pressure curves for a solvent (red curve) and a solution of the solvent with a second liquid (green curve). Is the second liquid more volatile or less volatile than the solvent?

T (°C)

8. How does a solution of two volatile components with strong solute-solvent attractions deviate from Raoult's law? Why?

9. An unknown white powder is found on the table at a crime scene and the suspect claims that it is table sugar (sucrose, C₁₂H₂₂O₁₁). A forensic chemist dissolves 0.512 g of the unknown white powder in enough water to produce 100.0 mL of solution. The osmotic pressure is measured at 25 °C and found to be 278 mm Hg. Does the osmotic pressure measurement support the claim that the powder is sucrose?