CHM 51-Dang Due Thursday 11/19/2020

- 1. Predict the sign of ΔS in the system for each of the following reactions
- a. $PCl_5(s) \rightarrow PCl_3(l) + Cl_2(g)$

b. $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l)$

c. $2H_3O^+(aq) + CO_3^{2-}(aq) \rightarrow CO_2(g) + 3H_2O(l)$

2. Use the data from the appendix in the back of your book to calculate ΔS°_{sys} , ΔS°_{surr} and ΔS°_{total} at 25°C for the reactions. Is the reaction spontaneous under standard-state conditions at 25°C?

a. $N_2(g) + 2O_2(g) \rightarrow N_2O_4(g)$

3. Use the standard entropy to calculate ΔS°_{surr} and ΔS°_{univ} and Gibs free energy ΔG° for the following reaction at 25°C.

 $C_3H_8(g) + 5 O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$

Determine the at what temperature will the reaction become spontaneous or nonspontaneous or NEVER

4. Use the standard free energies of formation (G°_{f}) to calculate the ΔG° (in kJ) for the following reactions a. CH₃OH(l) + O₂(g) \rightarrow HCO₂H(l) + H₂O(l)

5. Calculate ΔG for the Haber process at 365 K for a mixture of 1.5 atm N₂, 4.5 atm H₂ and 0.75 atm NH₃ N₂(g) + 3H₂(g) \Longrightarrow 2 NH₃(g)

6. At 25°C, K_a for acid dissociation of aspiring (C₉H₈O₄) is 3.0 x 10⁻⁴. Calculate ΔG° for the reaction C₉H₈O₄ (aq) + H₂O(l) \longrightarrow H₃O⁺(aq) + C₈H₇O₄ (aq)

- 7. Consider the dissolution of AgBr in water at 25°C AgBr(s) \longrightarrow Ag⁺(aq) + Br (aq)
 - a. Use the standard heats formation and standard molar entropies to calculate ΔG° for the reaction

b. Calculate K_{sp} for AgBr at 25°C

c. Calculate ΔG for the dissolution of AgBr at 25°C when $[Ag^+] = [Br^-] = 1.00 \times 10^{-5} M$ Is your result consistent with the relative values of Q and K_{sp}

8. If ΔG°_{f} for gaseous bromine is 3.14 kJ/mol at 25°C above bromine solid, what is the vapor pressure of bromine? (Hint: write the chemical equation for the sublimation of bromine solid)