1. Predict the sign of $\Delta \mathrm{S}$ in the system for each of the following reactions
a. $\mathrm{PCl}_{5}(\mathrm{~s}) \rightarrow \mathrm{PCl}_{3}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
c. $2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2. Use the data from the appendix in the back of your book to calculate $\Delta \mathrm{S}^{\circ}{ }_{\text {sys }}, \Delta \mathrm{S}_{\text {surr }}^{\circ}$ and $\Delta \mathrm{S}_{\text {total }}^{\circ}$ at $25^{\circ} \mathrm{C}$ for the reactions. Is the reaction spontaneous under standard-state conditions at $25^{\circ} \mathrm{C}$?
a. $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
3. Use the standard entropy to calculate ΔS° surr and ΔS° univ and Gibs free energy ΔG° for the following reaction at $25^{\circ} \mathrm{C}$.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

4. Use the standard free energies of formation $\left(\mathrm{G}^{\circ} \mathrm{f}\right)$ to calculate the $\Delta \mathrm{G}^{\circ}$ (in kJ$)$ for the following reactions a. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCO}_{2} \mathrm{H}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
5. Calculate $\Delta \mathrm{G}$ for the Haber process at 365 K for a mixture of $1.5 \mathrm{~atm} \mathrm{~N}_{2}, 4.5 \mathrm{~atm} \mathrm{H}_{2}$ and $0.75 \mathrm{~atm} \mathrm{NH}_{3}$ $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
6. At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{a}}$ for acid dissociation of aspiring $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ is 3.0×10^{-4}. Calculate $\Delta \mathrm{G}^{\circ}$ for the reaction $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{4}{ }^{-}(\mathrm{aq})$
7. Consider the dissolution of AgBr in water at $25^{\circ} \mathrm{C}$
$\operatorname{AgBr}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
a. Use the standard heats formation and standard molar entropies to calculate ΔG° for the reaction
b. Calculate $\mathrm{K}_{\text {sp }}$ for AgBr at $25^{\circ} \mathrm{C}$
c. Calculate $\Delta \mathrm{G}$ for the dissolution of AgBr at $25^{\circ} \mathrm{C}$ when $\left[\mathrm{Ag}^{+}\right]=[\mathrm{Br}]=1.00 \times 10^{-5} \mathrm{M}$ Is your result consistent with the relative values of Q and $\mathrm{K}_{\text {sp }}$
8. If $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}$ for gaseous bromine is $3.14 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$ above bromine solid, what is the vapor pressure of bromine? (Hint: write the chemical equation for the sublimation of bromine solid)
