Due Thursday 4/30/20 at 6PM
*For each problem, show all necessary chemical reaction (hydrolysis in water and neutralization)

1. Calculate the pH of a buffer solution prepared by dissolving 0.10 moles of cyanic acid, HCNO , and 0.50 moles of sodium cyanate, NaCNO , in enough water to make 0.500 liter of solution. For $\mathrm{HCNO}, \mathrm{K}_{\mathrm{a}}=2.0 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$. Setup a chemical equation and an ICE table. Do no use Henderson-Hasselbalch.

$$
\begin{aligned}
x & =4.0 \times 10^{-5}(\text { check }(5 \%) \\
P 1 t & =-\log \left(4.0 \times 10^{5}\right) \\
& =4.40
\end{aligned}
$$

a. Find the pH after 10.0 mL of 1.00 M KOH is added to the buffer from part (a). You can use Henderson-Hasselbalch after completing neutralization table.

$$
\begin{aligned}
& \operatorname{mol} H C N O=0.10 \mathrm{~m} \mathrm{\phi l}=100 \mathrm{mmcl} \\
& \mathrm{mmd} \mathrm{CNO}=0.50 \mathrm{mal}=500 \mathrm{mmcl} \\
& \mathrm{mmd}-O H=10.0 \mathrm{ml} \times 1.00 \mathrm{~m}=10.0 \mathrm{mal}
\end{aligned}
$$

Neubatizahín
$\mathrm{HCNO}+\mathrm{O} \mathrm{H}_{(\mathrm{Sl}}^{\mathrm{S}} \rightarrow \mathrm{H}_{2} \mathrm{C}+\mathrm{CNO}$

I 100 mmd	10.0 mal	800 mmal
$C-10.0$	-10.0	+10.0
$E 90 \mathrm{mmal}$	θ	510 mmal

Hydrolysis HZNO

$$
\begin{aligned}
& k_{a}=2.0 \times 10^{-4}=\frac{(+)(1.0+x}{0.18=-1} \\
& x=3.6+10^{-5} \\
& p^{1 H}=-\log \left(3.6+10^{-5}\right) \\
&=(4.44)>4.40 \\
& \text { move basic }
\end{aligned}
$$

6. For the titration of 25.00 mL of 0.150 M HBr with 0.250 M NaOH :
a. Calculate the initial pH .

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.150 \mathrm{~m}
$$

b. How much NaOH is required to reach the equivalence point?

$$
\mu_{b}=\left(\frac{(0.150 \mathrm{~m})(25.00 \mathrm{ml})}{0.250 \mathrm{~m}}=15.0 \mathrm{ml}\right)
$$

c. What is the pH at the equivalent point?

$$
\mathrm{pH}=7.00
$$

above cyivalance
d. What is the pH after 20.50 mL of titrant has been added?
$\mathrm{mmol} \mathrm{H}_{3} \mathrm{U}^{-1}=25.00 \mathrm{ml} \times 0.150 \mathrm{~m}=3.75 \mathrm{mmd}$
mad $-01 \mathrm{H}=20.50 \mathrm{ml} \times 0.250 \mathrm{~m}=5.13 \mathrm{mmol}$
Noubatization

$$
\begin{aligned}
& m=5.13 \mathrm{mmcl} \\
& \text { hew }[-0 H]=\frac{1.38 \mathrm{mmcl}}{45.5 \mathrm{ml}}=0.0303 \\
& \text { pH }=-100\left(\frac{1.0 \times 10^{-14}}{0.0303}\right)=12.48
\end{aligned}
$$

1. 40.0 mL of propionic acid $(\mathrm{H} \operatorname{Pr}) 0.100 \mathrm{M}, \mathrm{Ka}=1.3 \times 10^{-5}$, is titrated with 0.125 M NaOH .

Answer the following questions:
a) What is the initial pH ?

$H_{r}+\mathrm{H}_{n} \mathrm{O}$		
$I \mathrm{H}_{3} U_{(m)}^{+}+\mathrm{Pr}_{r}^{-}$		
$C-100 m$	θ	6
$C-x$	$+x$	$+x$
$E 0.100-x$	x	x

$$
\begin{aligned}
p^{1 t} & =-\log \left(1.1 \times 10^{-3}\right) \\
& =2.96
\end{aligned}
$$

$$
\begin{gathered}
k_{a}=1.3 \times 10^{-5}=\frac{(x)(x)}{0.100-44} \\
x=1,1 \times 10^{-3}
\end{gathered}
$$

check $\langle 5 \%$.
b) How many mL of NaOH are required to reach the equivalence point of this reaction?
me $V_{b}=\frac{(40.0 \mathrm{ml})(0.100 \mathrm{~m})}{0.12 \mathrm{~m}}=32.0 \mathrm{mt}$
c) What is the pH after adding 15.0 mL of NaOH ?
$\mathrm{mmal} \mathrm{H} \mathrm{H}_{\mathrm{r}}=40.0 \mathrm{md} \times 0.100 \mathrm{~m}=4.00 \mathrm{mmd}$
$\mathrm{mmal}-$ ult $=15.0 \mathrm{ml} \times 0.125 \mathrm{~m}=1.88 \mathrm{mmal}$
Neuhalizahn

ligdrulysi3 Her

$$
\begin{aligned}
k_{a}=1.3 \times 10^{-5} & =\frac{(\rightarrow) 10.0342+x)}{0.0385 f x} \\
x & =1.46+10^{-5}(\text { check } \\
p H & =-\log \left(1.46+10^{-5}\right) \\
& =4.83
\end{aligned}
$$

d) Calculate the pH at the equivalent point?
$\mathrm{mmol}-01 \mathrm{H}=32.0 \mathrm{ml} \times 0.125 \mathrm{~m}=4.00 \mathrm{mmul}$

Neubralizalsn

Hydrolysis of Pr^{-}
$\mathrm{Pr}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{O}}{\mathrm{O}}+\mathrm{HPr}$

$$
\left\{\begin{aligned}
& k_{b}=\frac{1.0 \times 10^{-14}}{1.3+10^{-5}}=7.6+10^{-10} \\
& k_{b}=7.6+10^{-10}=\frac{x^{2}}{0.0536-x} \\
& x=6.5 \times 10^{-6}=\left[-0 H^{-}\right] \\
& \text {DOH }=-10 y\left(6.5+10^{-6}\right) \\
&=5.18 \\
& p H=14.00-5.18 \\
&=8.82
\end{aligned}\right.
$$

$$
v_{a}=\frac{(25.0 \mathrm{ml})(0.065 \mathrm{~m})}{1.050 \mathrm{~m}}=32.5 \mathrm{ml}
$$

2. What is the pH of the solution obtained when 25.0 mL of 0.065 M benzylamine, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NH}_{2}$, is titrated to the equivalence point with $0.050 \mathrm{M} \mathrm{HCl} . \mathrm{K}_{\mathrm{b}}=4.7 \times 10^{-10}$
$\mathrm{mmal} \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NH}_{2}=25.0 \mathrm{mal} \times 0.065 \mathrm{~m}=1.6 \mathrm{mmd}$
$\mathrm{mmal} \mathrm{H}_{3}{ }^{+}=32.5 \mathrm{ml} \times 0.050 \mathrm{~m}=1.6 \mathrm{mmol}$

What is the pH at the midpoint?
$p H=p K_{a}$

$$
\begin{aligned}
& =p k q \\
& =-\log \frac{\left(2.1+10^{-5}\right)}{18}
\end{aligned}
$$

$$
=4 . .68
$$

What is the pH after 45.0 ml of titrant was added?

$$
\begin{aligned}
& =2.028 \\
& 2.1+10^{5}=\frac{x^{2}}{0.028-x} \\
& \sqrt{5.9 \times 10^{-7}}=\sqrt{2} \\
& x=7.7 \times 10 \\
&
\end{aligned}
$$

$\mathrm{mmolH} U^{u^{+}}=45.0 \mathrm{ml} \times 0.050 \mathrm{~m}=2.25 \mathrm{mmel}$
Nentralizalon

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\frac{0.7 \mathrm{mmd}}{85.0 \mathrm{ml}} \\
& =0.008 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
p H & =-\log (0.008 \mathrm{~m}) \\
& =2.1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nenbatizals }
\end{aligned}
$$

