1. Define a Bronsted acid and Bronsted base. Give an example and determine the acid-base conjugate pairs
2. Characterize the following chemicals as a Brønsted-Lowry acid, base, or both

	Acid/Base/Both (i.e amphoteric)
$\mathrm{H}_{2} \mathrm{CO}_{3}$	
HSO_{3}^{-}	
NO_{2}^{-}	
KOH	
$\mathrm{H}_{3} \mathrm{O}^{+}$	
$\mathrm{N}_{2} \mathrm{H}_{4}$	

3. List the conjugate acids for each of the following:
${ }^{-} \mathrm{OH}$ \qquad $\mathrm{HPO}_{4}{ }^{-2}$ \qquad $\mathrm{CrO}_{4}{ }^{-2}$

List the conjugate bases for each of the following:
$\mathrm{H}_{2} \mathrm{O}$ \qquad $\mathrm{HPO}_{4}{ }^{-2}$ \qquad $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$ \qquad
4. If you mixed an equal amount of acid and base, in which direction would it favor at equilibrium? Using the conjugate acid-base strength to support your answer. (Do not use K_{a} or K_{b})
5. Choose from the conjugate acid-base pairs $\mathrm{HSO}_{4}^{-} / \mathrm{SO}_{4}{ }^{2-}, \mathrm{HF} / \mathrm{F}^{-}$and $\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}$ to complete the following equation with the pair that gives an equilibrium constant $\mathrm{K}_{\mathrm{c}}>1$. Explain.
$\longrightarrow+\mathrm{NO}_{2}^{-} \rightarrow+\mathrm{HNO}_{2}$
6. Write the mathematical equation for calculating the following:

$$
\mathrm{pH}=\quad \mathrm{pOH}=
$$

7. Complete the table below to describe aqueous solutions.

Classification	Relative ion concentration	pH at $25^{\circ} \mathrm{C}$
		$\mathrm{pH}<7$
Neutral	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	
		$\mathrm{pH}>7$

8. Use the following acidity constants to help answer the questions below:
$\mathrm{K}_{\mathrm{a}}\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)=1.8 \times 10^{-5} ; \quad \mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=4.9 \times 10^{-10} ; \quad \mathrm{K}_{\mathrm{a}}(\mathrm{HCOOH})=1.7 \times 10^{-4}$
(a) Which of the three acids is the strongest? \qquad
(b) Which of the following bases is the weakest: $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, \mathrm{CN}^{-}$, or HCOO^{-}? \qquad
(c) What is the pK_{a} of HCN ? \qquad
(d) What is the K_{b} for HCOO^{-}? \qquad
9. Write the chemical equation for the ionization of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$and its corresponding K_{a} equation and value.
10. Write the chemical equation for the base ionization of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ and its corresponding K_{b} equation and value.
11. Use the chemical equations and K expressions from 9 and 10 above to show that $\mathrm{K}_{\mathrm{a}} * \mathrm{~K}_{\mathrm{b}}$ for a conjugate acidbase pair is equal to K_{w}.
12. Write the Lewis structures of the reactants and product of each of the following equations, and identify the Lewis acid and the Lewis base in each:

$$
\mathrm{CS}_{2}+\mathrm{SH}^{-} \rightarrow \mathrm{HCS}_{3}^{-}
$$

