1. Define a Bronsted acid and Bronsted base. Give an example and determine the acid-base conjugate pairs

2. Characterize the following chemicals as a Brønsted-Lowry acid, base, or both

	Acid/Base/Both (i.e amphoteric)
H ₂ CO ₃	
HSO ₃	
NO ₂	
КОН	
H ₃ O ⁺	
N_2H_4	

3. List the conjugate acids for each of the following:

-OH _____ HPO4 -2 ____ CrO4-2

List the conjugate bases for each of the following:

H₂O _____ HPO₄ ⁻² _____ CH₃NH₃⁺ _____

- 4. If you mixed an equal amount of acid and base, in which direction would it favor at equilibrium? Using the conjugate acid-base strength to support your answer. (Do not use K_a or K_b)
 - 5. Choose from the conjugate acid–base pairs HSO_4^-/SO_4^{2-} , HF/F^- and NH_4^+/NH_3 to complete the following equation with the pair that gives an equilibrium constant $K_c > 1$. Explain.

- + NO₂ \rightarrow + HNO₂

6. Write the mathematical equation for calculating the following:

7. Complete the table below to describe aqueous solutions.

Classification	Relative ion concentration	pH at 25 °C
		pH < 7
Neutral	[H ₃ O ⁺] = [OH ⁻]	
		pH > 7

8. Use the following acidity constants to help answer the questions below: $K_a(HC_2H_3O_2) = 1.8 \times 10^{-5};$ $K_a(HCN) = 4.9 \times 10^{-10};$ $K_a(HCOOH) = 1.7 \times 10^{-4}$

- (a) Which of the three acids is the strongest?
- (b) Which of the following bases is the weakest: $C_2H_3O_2^-$, CN^- , or $HCOO^-$?
- (c) What is the pK_a of HCN?
- (d) What is the K_b for HCOO⁻⁻?_____
- 9. Write the chemical equation for the ionization of $C_6H_5NH_3^+$ and its corresponding K_a equation and value.

10. Write the chemical equation for the base ionization of $C_6H_5NH_2$ and its corresponding K_b equation and value.

11. Use the chemical equations and K expressions from 9 and 10 above to show that K_a * K_b for a conjugate acidbase pair is equal to K_w.

12. Write the Lewis structures of the reactants and product of each of the following equations, and identify the Lewis acid and the Lewis base in each:
CS₂ + SH⁻ → HCS₃⁻