CHM 1220-Dang

Chapter 16 – Aqueous Equilibria: Acids and Bases

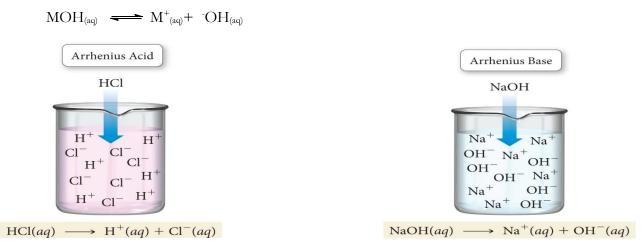
Properties of Acid

- Sour taste
- Ability to dissolve many metals
- Ability to neutralize bases
- Change blue litmus paper to red

Properties of Base

• Taste bitter

alkaloids = plant product that is alkaline often poisonous


- Feel slippery
- Ability to turn red litmus paper blue
- Ability to neutralize acids

Definition of Arrhenius acids and bases

Acid: any compounds that produce H⁺ when dissolve in water

 $HA_{(aq)} \longrightarrow H^+_{(aq)} + A^-_{(aq)}$

Base: any compounds that produce OH when dissolve in water

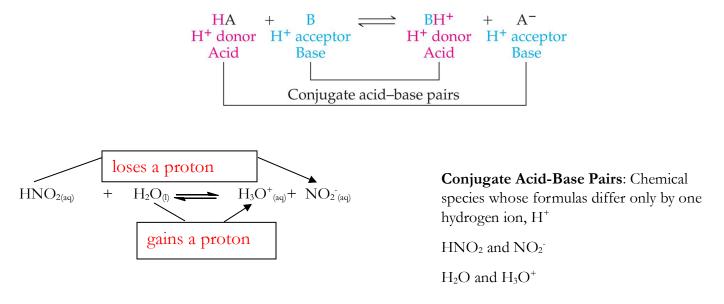
Problems:

• It does not explain why molecular substances, such as NH₃, dissolve in water to form basic solutions, even though they do not contain ⁻OH ions.

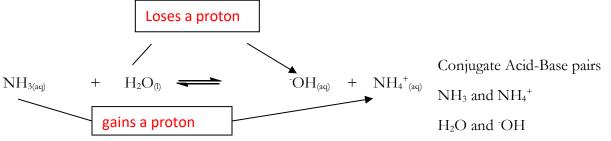
• It does not explain how some ionic compounds, such as Na_2CO_3 or Na_2O , dissolve in water to form basic solutions, even though they do not contain ⁻OH ions.

• It does not explain why molecular substances, such as CO_2 , dissolve in water to form acidic solutions, even though they do not contain H^+ ions.

• It does not explain acid–base reactions that take place outside aqueous solution.


This theory is limited to only "those compounds"

16.1 The Brønsted-Lowry Theory:


- a better definition for acids and bases in aqueous solution

Brønsted-Lowry Acid: A substance that can transfer hydrogen ions, H⁺. In other words, a proton donor

Brønsted-Lowry Base: A substance that can accept hydrogen ions, H⁺. In other words, a proton acceptor

In the acid example, notice the formation of H_3O^+ -- this species is named the hydronium ion. It lets you know that the solution is acidic!

Amphoteric Substances -Hydrated Protons and Hydronium Io

• Amphoteric substances can act as either an acid or a base because they have both a transferable H⁺ and an atom with lone pair electrons.

• Water acts as base, accepting H⁺ from HCl.

 $HCl_{(aq)} + H_2O_{(l)} \rightarrow Cl^-_{(aq)} + H_3O^+_{(aq)}$

• Water acts as acid, donating H⁺ to NH₃.

 $NH_{3(aq)}+ H_2O_{(l)} \quad \textcircled{}{\longrightarrow} \quad NH_4^+{}_{(aq)} + \ ^-OH_{(aq)}$

Due to high reactivity of the hydrogen ion, it is actually hydrated by one or more water molecules.

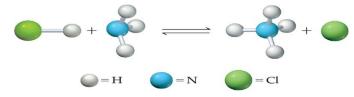
$$[H(H_2O)_n]^+ \begin{cases} n = 1 & H_3O^+ \\ n = 2 & H_5O_2^+ \\ n = 3 & H_7O_3^+ \\ n = 4 & H_9O_4^+ \end{cases}$$

For our purposes, H^+ is equivalent to H_3O^+ .

Dang-2

Examples: Write a balanced equation for the dissociation of each of the following Bronsted-Lowry acids in water

 $H_2CO_{3(aq)}$


HSO_{4 (aq)}

Examples: Write a balanced equation for the dissociation of each of the following Bronsted-Lowry bases in water

 CO_3^{2-}

 $CH_3NH_{2(\!aq\!)}$

Consider the given reaction and choose the best answer:

- A. Conj. acid base pair 1: HCl (acid) and NH₃ (base)
 Conj. acid base pair 2: NH₄⁺ (acid) and Cl⁻ (base)
- B. Conj. acid base pair 1: HCl (acid) and Cl⁻ (base)
 Conj. acid base pair 2: NH₃ (base) and NH₄⁺ (acid)
- C. Conj. acid base pair 1: HCl (acid) and Cl^- (base)

Conj. acid – base pair 2: NH₃ (acid) and NH₄⁺ (base)

16.2 Acid Strength and Base Strength

Acid-dissociation equilibrium helps to realize that the two bases, H₂O and A⁻ are competing for protons:

 $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$ Acid Base Acid Base With equal concentrations of reactants and products, what will be the direction of reaction?

If H_2O is a stronger base (stronger H^+ acceptor) than A^- , the majority of protons will be transferred from HA to H_2O and the solution will contain mainly H_3O^+ and A^-

 $HA(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + A^-(aq)$ Solution contains mainly

products when H_2O is a stronger base than A^- .

If A⁻ is a stronger base than H₂O, the ions will get the protons, and the solution will contain mainly HA and H₂O.

 $HA(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + A^-(aq)$

Solution contains mainly reactants when A^- is a stronger base than H_2O .

When beginning with equal concentrations of reactants and products, the protons is always transferred to the stronger base. This means that the direction of reaction to reach equilibrium is proton transfer from the stronger acid to the stronger base to give weaker acid and weaker base:

Stronger acid + stronger base \rightarrow Weaker acid + Weaker base

Recall:

Strong acids: $HCl_{(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$

Strong acids donate practically all their H's.

100% ionized in water (strong electrolytes)

 $[HA]_{ini} = [H_3O^+]$

A Str	6 Strong Acids		6 Strong Bases		
When HCl dissolves in water, it ionizes completely.		HCIO ₄	perchloric acid	LiOH	lithium hydroxide
HCl	HCl	HCI	hydrochloric acid	NaOH	sodium hydroxide
		HBr	hydrobromic acid	кон	potassium hydroxide
Cl ⁻ Cl ⁻		ні	hydroiodic acid	Ca(OH) ₂	calcium hydroxide
$Cl^ H_3O^+$ Cl^-	9 9 9	HNO ₃	nitric acid	Sr(OH) ₂	strontium hydroxide
H ₃ O ⁺ H ₃ O ⁺	H ₃ O ⁺	H_2SO_4	sulfuric acid	Ba(OH) ₂	barium hydroxide

• Other acids are considered weaker acids or "weaker acids"

 $HF_{(aq)} + H_2O_{(1)} = H_3O^+_{(aq)} + F^-_{(aq)}$

A Weak Acid

When HF dissolves in water, only a fraction of the molecules ionize.

Strong bases:

- Completely ionized in water to produce ⁻OH
- $[MOH]_{ini} = [OH]$

 $NaOH_{(aq)} \rightarrow Na^+_{(aq)} + OH_{(aq)}$

Weak Bases:

- dissociate only to a slight extent in water

- only a small percentage of the base molecules form ⁻OH ions, either through dissociation or reaction with water

 $NH_{3(aq)} + H_2O_{(1)}$ \longrightarrow $^{-}OH_{(aq)} + NH_4^{+}_{(aq)}$

The inverse relationship between the strength of an acid and the strength of its conjugate base is shown in the table below:

- The stronger an acid is at donating H, the weaker the conjugate base is at accepting H.

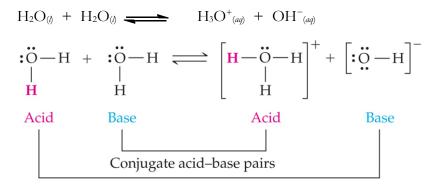
	Acid			Base				
	perchloric acid	HCIO4]	ſ	CIO ₄ ⁻	perchlorate ion		
T	sulfuric acid	H_2SO_4	Undergo complete acid ionization in water	Do not undergo base ionization	HSO ₄	hydrogen sulfate ion		
	hydrogen iodide	ні			1	iodide ion		
	hydrogen bromide	HBr			Br	bromide ion		
	hydrogen chloride	HCI		in water in water	in water	CI-	chloride ion	
	nitric acid	HNO3			l	NO3	nitrate ion	
	hydronium ion	H ₃ O ⁺			H ₂ O	water		
	hydrogen sulfate ion	HSO_4^-			SO4 ²⁻	sulfate ion		
Increasing acid strength	phosphoric acid	H ₃ PO ₄			H ₂ PO ₄ ⁻	dihydrogen phosphate ion		
	hydrogen fluoride	HF	HE		F-	fluoride ion		
	nitrous acid	HNO ₂			NO2	nitrite ion		
	acetic acid	СН ₃ СО ₂ Н Н ₂ СО ₃ Н ₂ S NH ₄ ⁺			CH ₃ CO ₂ ⁻	acetate ion		
	carbonic acid				HCO3	hydrogen carbonate ion		
	hydrogen sulfide				HS ⁻	hydrogen sulfide ion		
	ammonium ion				NH3	ammonia		
	hydrogen cyanide	HCN			CN-	cyanide ion		
1	hydrogen carbonate ion	нсо ₃ - н ₂ о			CO32-	carbonate ion		
	water				OH-	hydroxide ion		
	hydrogen sulfide ion	HS ⁻	Do not undergo acid ionization	ſ	S ²⁻	sulfide ion		
	ethanol	C ₂ H ₅ OH		Undergo complete	$C_{2}H_{5}O^{-}$	ethoxide ion		
	ammonia	NH3		base {	NH2	amide ion		
	hydrogen	H ₂		ionization	н	hydride ion 🛛 🗧		
	methane	CHA	in water	in water	CH ₃	methide ion		

Example: If you mix equal amount concentrations of reactants and products, decide which species (reactants or products) are favored at the completion of the reaction. Why?

 $H_2SO_{4(aq)} + NH_{3(aq)} \longrightarrow NH_4^+{}_{(aq)} + HSO_4^-{}_{(aq)}$

Weak acids donate a small fraction of their H's.

Most of the weak acid molecules do not donate H to water.

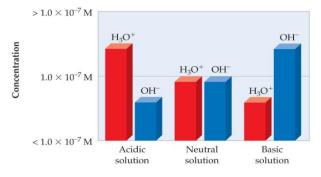

Much less than 1% ionized in water

 $[H_3O^+] \leq [weak acid]$

16.4 Dissociation of Water : Autoionization of water

Fredrich Kohlrausch, around 1900, found that no matter how pure water is, it still conducts a minute amount of electric current. This proves that water self-ionizes.

- Since the water molecule is amphoteric, it may dissociate with itself to a slight extent.
- Only about 2 in a billion water molecules are ionized at any instant!


At 25° C [H₃O⁺] = [⁻OH] = 1.0 x 10⁻⁷ M

The equilibrium expression used here is referred to as the autoionization constant for water, K_w

$$K_w = [H_3O^+] [OH] = 1.0 \times 10^{-14}$$

Knowing this value will help to calculate [H₃O⁺] or [OH] at various situations

Knowing this value will help to calculate [H₃O⁺] or [OH] at various situations

10 × 10-7 15	

Dissociation of Water (3 of 4)

Pearson

Acidic:	$[H_{3}O^{+}] > [OH]$
Basic:	$[H_{3}O^{+}] < [OH]$
Neutral:	$[H_{3}O^{+}] = [OH]$

Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved

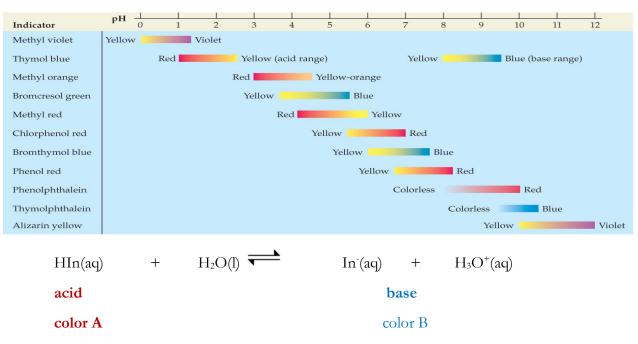
Example: At 60°C, the value of K_w is 1.0×10^{-13} . Calculate the $[H_3O^+]$ and $[^{\circ}OH]$ in a neutral solution then explain the effect of changing temperature.

16.5 The pH Scale and Significant figures

Used to designate the $[H^+]$ in most aqueous solutions where $[H^+]$ is small.

$pH = -log [H^+]$	$pOH = -\log [OH]$	pH + pOH = 14.00
Acidic: pH < 7.00	Neutral: $pH = 7.00$	Basic: pH > 7.00

The hydronium ion concentration for lemon juice is approximately 0.0025 M. What is the pH when $[H_3O^+] = 0.0025$ M? **2 significant figures**


2 decimal places

Example: Calculate the [OH] in a solution with $[H_3O^+] = 7.5 \times 10^{-5}M$. Is this solution basic, acidic or neutral?

Calculate the concentration of H_3O^+ and ^-OH for a solution with a pH of 8.37

16.6 Measuring pH

The approximate pH of a solution can be determined by using acid-base indicator, a substance that changes color in specific pH range.

The acid and its conjugate base have different colors. At low pH, the concentration of H_3O^+ is high and so the equilibrium position lies to the left. The equilibrium solution has the color A. At high pH, the concentration of H_3O^+ is low and so the equilibrium position thus lies to the right and the equilibrium solution has color

More accurate pH values can be determined with an electronic instrument called a pH meter, a device that measures the pH-dependent electrical potential of the test solution.

