Chapter 16: Acid-Base Equilibria

16.7 The pH in Solutions of Strong Acids and Strong Bases

A strong monoprotic acids (E.g HCl, HNO_{3} etc..) - 100\% dissociated in aqueous solution

- Contains a single dissociable proton
$\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \xrightarrow{100 \%} \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+{\mathrm{A}^{-}}_{(\mathrm{aq})}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{A}^{-}\right]=[\mathrm{HA}]_{\mathrm{ni}}$
Undissociated HA $]_{\text {ini }}=0$
Strong Bases: Water-soluble ionic solids
- Alkali metal hydroxide, MOH
$\mathrm{MOH}_{(\mathrm{aq})} \xrightarrow{100 \%} \mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{M}_{(\mathrm{aq})}^{+}$
$[\mathrm{MOH}]_{\text {ini }}=[\mathrm{OH}]$
- Exits in aqueous solution as alkali metal cations and hydroxide anions
- Alkaline earth metal hydroxide, $\mathrm{M}(\mathrm{OH})_{2}$ where $\mathrm{M}=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$

$$
\begin{aligned}
& \mathrm{M}(\mathrm{OH})_{2(\mathrm{aq})} \stackrel{100 \%}{\longrightarrow} 2 \mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{M}_{(\mathrm{aq})}^{+2} \\
& 2 \times\left[\mathrm{M}(\mathrm{OH})_{2}\right]=[-\mathrm{OH}]
\end{aligned}
$$

- Less soluble than alkali hydroxide, therefore lower [-OH]

Example: Calculate the $[\mathrm{OH}]$ and pH of $1.25 \times 10^{-2} \mathrm{M} \mathrm{HClO}_{4}$

Example: Calculate the pH of a solution prepared by dissolving 0.25 g of CaO in enough water to make 1.50 L of solution.

Example: The pH of an unknown acid solution is 2.45 . What is the initial concentration of this acid solution? Assume it fully dissociated.

16.8 Equilibria in Solutions of Weak Acids

It's important to realize that a weak acid is not the same thing as a dilute solution of a strong acid. Whereas a strong acid is 100% dissociated in aqueous solution, a weak acid is only partially dissociated. The equilibrium constant for the dissociation reaction, denoted is called the acid-dissociation constant, Ka.

$$
\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

[^0]
16.9 Calculating Equilibrium Concentrations in Solutions of Weak Acids

- Step 1: Write the balance equation for weak acid and water
- Step 2: Identify the principle reaction (the reaction that has larger K_{a})
- Step 3: Generate an ICE table
- Step 4: Solve for x
- Step 5: Calculate pH and all other concentrations (HA, $\mathrm{H}_{3} \mathrm{O}^{+}$and A^{-})

Example: What is the pH of a 0.125 M HClO (hypochlorous acid) solution? $K_{\mathrm{a}}=3.5 \times 10^{-8}$

Example: Determine the concentration of all species present $\left(\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ and pH of a 0.150 M CH3 $\mathrm{CO}_{2} \mathrm{H}$

$$
K_{a}=1.8 \times 10^{-5}
$$

16.10 Percent Dissociation in Solutions of Weak Acids

Another measure of the strength of an acid is its percent ionization. The percent ionization of a weak acid is the ratio of its concentration of the ionized acid to the initial acid concentration, times 100:

$$
\% \text { ionization }=\frac{[\mathrm{HA}]_{\text {dissociated }}}{[\mathrm{HA}]_{\text {ini }}} \times 100 \quad \text { OR }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]_{\text {ini }}} \times 100
$$

The smaller the value of K_{a}, the smaller \% ionization BUT do not confuse a weak acid with a diluted acid.
For a given weak acid, the percent dissociation increases with decreasing concentration, as shown in Figure 16.8

Why Doesn't the Increase in $\mathbf{H}_{3} \mathbf{O}^{+}$Keep Up with the Increase in HA?

- The reaction for ionization of a weak acid is as follows:
$\mathrm{HA}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(t)} \rightleftharpoons \mathrm{A}_{(a q)}^{-}+\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}$
- According to Le Châtelier's principle, if we reduce the concentrations of all the (aq) components, the equilibrium should shift to the right to increase the total number of dissolved particles.
- We can reduce the (aq) concentrations by using a more dilute initial acid concentration.
- The result will be a larger $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the dilute solution compared to the initial acid concentration. This will result in a larger percent ionization

16.11 Polyprotic acids

Acids that contain more than one dissociable proton are called polyprotic acids. Polyprotic acids dissociate in a stepwise manner, and each dissociation step is characterized by its own acid-dissociation constant, $\mathrm{K}_{\mathrm{a} 1}, \mathrm{~K}_{\mathrm{a} 2}$ and so forth,

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) & \mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=4.3 \times 10^{-7} \\
\mathrm{HCO}_{3}^{-}(\mathrm{aq})
\end{array}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{CO}_{3}^{-2}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}^{-2}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=5.6 \times 10^{-11} .
$$

- Generally, the difference in K_{a} values is great enough so that the second ionization does not happen to a large enough extent to affect the pH .
$-K_{\mathrm{a} 1}>K_{\mathrm{a} 2}>K_{\mathrm{a} 3}$
- Because of electrostatic forces, it's more difficult to remove a positively charged proton from a negative ion, such as than from an uncharged molecule, such as $\mathrm{H}_{2} \mathrm{CO}_{3}$ so $\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}$.
- Most pH problems just do first ionization.
- Except $\mathrm{H}_{2} \mathrm{SO}_{4} \Rightarrow$ uses $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$ as the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for the second ionization.
- $\quad\left[\mathrm{A}^{2-}\right]=K_{\mathrm{a} 2}$ as long as the second ionization is negligible.

Ionization in $\mathrm{H}_{2} \mathrm{SO}_{4}$

- The ionization constants for $\mathrm{H}_{2} \mathrm{SO}_{4}$ are as follows:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{HSO}_{4}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {aq })} & \mathrm{K}_{\mathrm{a} 1}=\text { strong } \\
\mathrm{HSO}_{4}{ }^{(\mathrm{aq})}+ \\
+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftharpoons \mathrm{SO}_{4}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }^{(\mathrm{aq})} & K_{\mathrm{a} 2}=1.2 \times 10^{-2}
\end{array}
$$

[^0]: * The proton that is transferred to water when the acid dissociates is shown in red.
 $\dagger_{\mathrm{p} K_{\mathrm{a}}}=-\log K_{\mathrm{a}}$.

