19.1 Oxidation-Reduction Review

Rules for Assigning Oxidation Numbers

1. An atom in its elemental state has an oxidation number of 0 .
$\begin{array}{llll}\mathrm{Na}_{(\mathrm{s})} & \mathrm{Mg}_{(\mathrm{s})} & \mathrm{C}_{(\mathrm{s})} \quad \mathrm{O}_{2(g)}\end{array}$
2. A monatomic ion has an oxidation number identical to its charge
$\mathrm{Na}^{+}{ }_{\text {(qq) }}$
$\left.\mathrm{Mg}^{2+(}{ }_{\mathrm{aq}}\right)$
$\mathrm{O}^{2-(\text { aq })}$
$\mathrm{Cl}_{(\mathrm{aq})}$
3. Other exceptions:
4. Hydrogen can be either +1 (bonding to nonmetal) or -1 (bonding to metal)
HCl
vs.
NaH
+1
-1
5. Oxygen usually has an oxidation number of -2 but when bonded to itself, it has an oxidation number of -1 .

6. Halogens usually have an oxidation number of -1 except bonding to oxygen

7. The sum of the oxidation numbers is 0 for a neutral compound and is equal to the net charge for a polyatomic ion

$$
\begin{aligned}
& 2(+1)+\mathrm{x}+3(-2)=0 \text { (net charge) } \\
& \mathrm{x}=\text { ???? } \\
& 2(\mathrm{x})+7(-2)=-2 \text { (net charge) } \\
& x=\text { ???? }
\end{aligned}
$$

Balancing Redox Reaction in Acidic Solution-Half Method

$$
\mathbf{I}_{(a q)}^{1-}+\mathbf{C r}_{2} \mathbf{O}_{7}^{7^{2-}}{ }_{(a q)} \rightarrow \mathbf{C r}^{3+}{ }_{(a q)}+\mathbf{I O}_{3^{1-}}{ }_{(a q)}
$$

1. Assign Oxidation number

$$
\mathrm{I}=-1 \quad \mathrm{Cr}=+6 \quad \mathrm{O}=-2 \rightarrow \mathrm{Cr}=+3 \quad \mathrm{I}=+5 \quad \mathrm{O}=-2
$$

2. Split into Oxidation half and Reduction half
$\mathrm{OX}(1 / 2): \quad \mathrm{I}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{IO}_{3^{-}{ }^{-}(\mathrm{aq})}$
$\operatorname{RED}(1 / 2): \quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}{ }_{(a q)} \quad \rightarrow \mathrm{Cr}^{3+}{ }_{(a q)}$
3. Balancing Oxidation-Half:
a. Balance all other atoms except O and H
$\mathrm{I}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{IO}_{3^{-}}{ }^{-}$
b. Balance O by adding $\mathrm{H}_{2} \mathrm{O}_{(1)}$
$3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{I}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{IO}_{3_{(a q)}^{-}}^{-}$
c. Balancing \mathbf{H} by adding $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$
$3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{I}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{IO}_{3^{-}(\mathrm{aq})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq})}$
d. Balancing charges by adding appropriate number of e- (to the right)
$3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{I}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{IO}_{3^{-}}{ }_{(\mathrm{aq})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq)}}+6 \mathrm{e}-$
$0 \quad-1 \quad \rightarrow \quad-1 \quad+6 \quad-6$
4. Balancing Reduction-Half:
a. Balance all other atoms except O and H
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}{ }_{(a q)} \rightarrow 2 \mathrm{Cr}^{3+}{ }_{(a q)}$
b. Balance O by adding $\mathrm{H}_{2} \mathrm{O}_{(1)}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}{ }_{(a q)} \rightarrow 2 \mathrm{Cr}^{3+}{ }_{(a q)}+7 \mathrm{H}_{2} \mathrm{O}_{(1)}$
c. Balance H by adding $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$
$14 \mathrm{H}^{+}{ }_{(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}{ }_{(a q)} \rightarrow 2 \mathrm{Cr}^{3+}{ }_{(a q)}+7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
d. Balancing charges by adding appropriate number of e- (to the left) $6 \mathrm{e}-+14 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}{ }_{(a q)} \rightarrow 2 \mathrm{Cr}^{3+}{ }_{(a q)}+7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\begin{array}{lllll}-6 & 14+ & -2 & \rightarrow & +6\end{array}$
5. Combined the two balanced half reactions then write the net equation by cancelling the electrons.

$$
\begin{array}{cl}
\text { OX (1/2): } & 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{I}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{IO}_{3^{-}(\mathrm{aq})}+6 \mathrm{H}^{+}{ }_{(\mathrm{aq)}}+6 \mathrm{e}- \\
\text { RED (1/2): } & 6 \mathrm{e}-+14 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}{ }_{(a q)} \rightarrow 2 \mathrm{Cr}^{3+}{ }_{(a q)}+7 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{array}
$$

Net-Equation: $\mathrm{I}^{-}{ }_{(\mathrm{aq})}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Cr}^{3+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{IO}_{3^{-}(\mathrm{aq})}$
Acidic solution is indicated by the presence to $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ in the net-equation $*_{\text {neutralize }} \mathrm{H}+$ with $-\mathrm{OH} \quad+8 \mathrm{OH}_{(\mathrm{aq})} \rightarrow \quad+8 \mathrm{OH}_{(\mathrm{aq})}$

$$
=8 \mathrm{H}_{2} \mathrm{O}_{(1)}
$$

Net-Equation in Basic
$\mathrm{I}^{-}{ }_{(\mathrm{aq})}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{Cr}^{3+}{ }_{(\mathrm{aq})}+8^{-} \mathrm{OH}_{(\mathrm{aq})}+\mathrm{IO}_{3^{-}(\mathrm{aq})}$

