19.1 Oxidation-Reduction Review

Rules for Assigning Oxidation Numbers

1. An atom in its elemental state has an oxidation number of 0.

 $Na_{(s)} \qquad Mg_{(s)} \qquad C_{(s)} \qquad O_{2(g)}$

2. A monatomic ion has an oxidation number identical to its charge

 $Na^{+}_{(aq)}$ $Mg^{2+(}_{aq)}$ $O^{2-}_{(aq)}$ $Cl^{-}_{(aq)}$

- 3. Other exceptions:
 - 1. Hydrogen can be either +1 (bonding to nonmetal) or -1 (bonding to metal)

HCl vs. NaH +1 -1

2. Oxygen *usually* has an oxidation number of -2 but when bonded to itself, it has an oxidation number of -1.

Н — О — Н			Н — О — О — Н			
1	t	1	1	t	1	1
/	ļ	1	/	1	1	\
+1	-2	+1	+1	-1	-1	+1

3. Halogens *usually* have an oxidation number of -1 *except* bonding to oxygen

H — Cl		Cl - O - Cl			
1	Ì	1	Ţ	\backslash	
+1	-1	+1	-2	+1	

4. The sum of the oxidation numbers is 0 for a neutral compound and is equal to the net charge for a polyatomic ion

H₂SO₃ (1) + 1 + 1 + 3(-2) = 0 (net charge) (1) + 1 + 1 + 3(-2) = 0 (net charge) (1) + 1 + 1 + 3(-2) = 0 (net charge) (1) + 1 + 1 + 3(-2) = 0 (net charge) (1) + 1 + 1 + 3(-2) = 0 (net charge) (1) + 1 + 1 + 3(-2) = 0 (net charge) (1) + 1 + 1 + 3(-2) = 0 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge) (1) + 1 + 1 + 3(-2) = -2 (net charge)(2) + 1 + 1 + 3(-2) = -2 (net charge) **Balancing Redox Reaction in Acidic Solution-Half Method**

 $I^{1-}_{(aq)} + Cr_2O_7^{2-}_{(aq)} \rightarrow Cr^{3+}_{(aq)} + IO_3^{1-}_{(aq)}$

1. Assign Oxidation number

$$I = -1$$
 $Cr = +6$ $O = -2 \rightarrow Cr = +3$ $I = +5$ $O = -2$

- 2. Split into Oxidation half and Reduction half
 - OX (1/2): $I^{-}_{(aq)}$ \rightarrow $IO_{3^{-}(aq)}$ RED (1/2): $Cr_2O_7^{2^{-}}(aq)$ \rightarrow $Cr^{3^{+}}(aq)$

3. Balancing Oxidation-Half:

a. Balance all other atoms except O and H

$$I_{(aq)} \rightarrow IO_{3(aq)}$$

b. Balance O by adding $H_2O_{(l)}$

 $3H_2O_{(1)} + I_{(aq)} \rightarrow IO_3_{(aq)}$

- c. Balancing H by adding $H^{+}_{(aq)}$
- $3 H_2O_{(l)} + I_{(aq)} \rightarrow IO_3(aq) + 6H^+_{(aq)}$

d. Balancing charges by adding appropriate number of e- (to the right) $3 H_2O_{(1)} + I_{(aq)}^- \rightarrow IO_{3(aq)}^- + 6 H^+_{(aq)} + 6e$ -

 $0 \qquad -1 \rightarrow -1 \qquad +6 \qquad -6$

4. Balancing Reduction-Half:

a. Balance all other atoms except O and H $Cr_2O_7^{2-}(aq) \rightarrow 2 Cr^{3+}(aq)$

b. Balance O by adding $H_2O_{(l)}$ $Cr_2O_7^{2-}_{(aq)} \rightarrow 2 Cr^{3+}_{(aq)} + 7 H_2O_{(l)}$ c. Balance H by adding $H^+_{(aq)}$ $14 H^+_{(aq)} + Cr_2O_7^{2-}_{(aq)} \rightarrow 2 Cr^{3+}_{(aq)} + 7 H_2O_{(l)}$

d. Balancing charges by adding appropriate number of e- (to the left) 6e- + 14 $H^+_{(aq)}$ + $Cr_2O_7^{2-}_{(aq)} \rightarrow 2Cr^{3+}_{(aq)}$ + 7 $H_2O_{(l)}$ -6 14+ -2 \rightarrow +6 0

5. Combined the two balanced half reactions then write the net equation by cancelling the electrons.

OX (1/2):
$$3 H_2O_{(1)} + I_{(aq)} \rightarrow IO_{3(aq)} + 6 H_{(aq)}^+ + 6e$$
-
RED (1/2): $6e_{-} + 14 H_{(aq)}^+ + Cr_2O_{7(aq)}^{-2} \rightarrow 2Cr_{(aq)}^{3+} + 7 H_2O_{(1)}$

Net-Equation: $I_{(aq)}^{-} + Cr_2O_7^{2-}(aq) + 8H_{(aq)}^{+} \rightarrow 2Cr^{3+}_{(aq)} + 4H_2O_{(1)} + IO_3^{-}_{(aq)}$

Acidic solution is indicated by the presence to $H^+_{(aq)}$ in the net-equation

*neutralize H+ with -OH + 8 $^{-}OH_{(aq)}$ + 8 $^{-}OH_{(aq)}$ = 8 $H_2O_{(l)}$

Net-Equation in Basic

 $I_{(aq)}^{-} + Cr_2O_7^{2-}(aq) + 4H_2O_{(1)} \rightarrow 2Cr^{3+}_{(aq)} + 8^{-}OH_{(aq)} + IO_3^{-}_{(aq)}$